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A B S T R A C T

Increasing evidence suggests that neuronal communication is a defining property of functionally specialized brain
networks and that it is implemented through synchronization between population activities of distinct brain
areas. The detection of long-range coupling in electroencephalography (EEG) and magnetoencephalography
(MEG) data using conventional metrics (such as coherence or phase-locking value) is by definition contaminated
by spatial leakage. Methods such as imaginary coherence, phase-lag index or orthogonalized amplitude corre-
lations tackle spatial leakage by ignoring zero-phase interactions. Although useful, these metrics will by con-
struction lead to false negatives in cases where true zero-phase coupling exists in the data and will underestimate
interactions with phase lags in the vicinity of zero. Yet, empirically observed neuronal synchrony in invasive
recordings indicates that it is not uncommon to find zero or close-to-zero phase lag between the activity profiles of
coupled neuronal assemblies.

Here, we introduce a novel method that allows us to mitigate the undesired spatial leakage effects and detect
zero and near zero phase interactions. To this end, we propose a projection operation that operates on sensor-
space cross-spectrum and suppresses the spatial leakage contribution but retains the true zero-phase interac-
tion component. We then solve the network estimation task as a source estimation problem defined in the product
space of interacting source topographies. We show how this framework provides reliable interaction detection for
all phase-lag values and we thus refer to the method as Phase Shift Invariant Imaging of Coherent Sources
(PSIICOS).

Realistic simulations demonstrate that PSIICOS has better detector characteristics than existing interaction
metrics. Finally, we illustrate the performance of PSIICOS by applying it to real MEG dataset recorded during a
standard mental rotation task. Taken together, using analytical derivations, data simulations and real brain data,
this study presents a novel source-space MEG/EEG connectivity method that overcomes previous limitations and
for the first time allows for the estimation of true zero-phase coupling via non-invasive electrophysiological
recordings.
1. Introduction

The rapidly growing field of brain connectomics provides compelling
evidence for a prominent role of functional and structural connectivity in
mediating healthy brain function. It is nowwidely accepted that behavior
is determined to a great extent by the coordinated activity of interacting
cortical areas (e.g. Varela et al. (2001), Baker et al. (2014), Ossadtchi
et al. (2010), Bastin et al. (2017), Luo et al. (2012), Jerbi et al. (2007)).
Established research points to a prominent role of brain networks (van
den Heuvel et al. (2012)) and neuronal rhythms (Buzsaki, 2006,
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Schnitzler and Gross (2005), Foster et al. (2016)) in providing mecha-
nistic processes and dynamic brain-wide architectures. Collectively, such
networks of oscillatory brain patterns provide a rich repertoire of
neuronal communication paths necessary for cognition (Fries (2015)).

Beyond the spatial structure of a network, which is given by its nodes
and edges, the time-varying and frequency-dependent strength of the
interactions are critical. They are thought to capture the dynamic nature
of such aggregations that coalesce and de-coalesce over time reflecting
the complex structure of information flow in the brain. Therefore, the
identification and characterization of the spatial, temporal and spectral
v), karim.jerbi@umontreal.ca (K. Jerbi).
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patterns of such interactions through electrophysiology is necessary in
order to foster novel insights into the basic mechanisms and functional
role of brain connectivity (Varela et al. (2001)). Despite important con-
tributions from neuroimaging modalities, such as functional magnetic
resonance imaging (fMRI), the detailed fine-grained dynamics are only
amenable to electrophysiological measurement techniques such as elec-
troencephalography (EEG), intracranial EEG and magnetoencephalog-
raphy (MEG). When combined with source estimation techniques, MEG
offers a unique combination of sub-centimeter spatial accuracy with
millisecond-range temporal resolution (Hamalainen et al. (1993), Baillet
et al. (2001), Gross et al. (2013)).

Considerable effort has been directed towards developing metrics and
methodological frameworks to increase the diversity and reliability of
cortical interactionmeasures. The large number of methods implemented
and used over the last decades cover a wide range of approaches ranging
from standard time and frequency-domain interaction metrics (such as
correlation and coherence) to measures that quantify specific dimensions
of signal coupling, such as phase-based or band-limited amplitude re-
lationships, directionality, cross-frequency interactions or non-linear
associations (Bastos and Schoffelen (2016), Marzetti et al. (2008),
Schoffelen and Gross (2009), Colclough et al. (2016), Colclough et al.
(2015), Greenblatt et al. (2012), Kaminski and Blinowska (2014), Hill-
ebrand and Stam (2014), Nolte et al. (2004b), Lachaux et al. (1999),
O'Neill et al., Brookes et al. (2012), Brookes et al. (2011), Hillebrand
et al. (2012), Hipp et al. (2012), Vinck et al. (2011), Stam et al. (2007),
Chella et al. (2016), Chella et al. (2015), Soto et al. (2016), Wibral et al.
(2011), Ioannides et al. (2000), Baccal�a and Sameshima (2001)).

One of the most prominent challenges that faces non-invasive MEG/
EEG connectivity estimation is the spatial leakage effect which signifi-
cantly complicates non-invasive studies of connectivity. Nolte et al.
(2004a) suggested the use of the imaginary part of coherency as a solu-
tion to the spatial leakage issue; by ignoring the real component, imag-
inary coherence is de facto insensitive to zero-phase interactions. Since
signal leakage is instantaneous, this method guarantees that any detected
coupling reflects true physiological interaction. This was followed by
further innovative measures based solely on the imaginary part of the
cross-spectrum such as the Phase Lag Index (PLI) (Stam et al. (2007)) and
its weighted version (wPLI) (Vinck et al. (2011)). These and other related
metrics such as orthogonalized envelope correlation (Hipp et al. (2012),
Colclough et al. (2015)) have now been widely adopted. Yet, despite
providing an important pragmatic step forward, these metrics can un-
derestimate true coupling because they are by construction blind to true
physiological zero-phase interactions if any are present among the
signals.

Another often overlooked limitation arises from the fact that the
imaginary part of the source space coherence varies as a function of the
sine of the phase lag between the coupled time series. Therefore, the
imaginary part has sensitivity that is maximal at 90� phase difference and
gradually drops to zero as the phase delay approaches zero. As a result, in
cases where the coupled sources have near-zero time lags, the measures
of coupling that exploit the imaginary part of cross-spectrum represent a
low SNR signal.

In other words, not only are these metrics blind to zero-phase lag
interactions, but their sensitivity is weak for phase lags approaching zero.
Ironically, in many cases, empirically observed neuronal synchrony is
characterized by a vanishing or very small phase lag between the time
series of coupled neuronal ensembles (e.g. Roelfsema et al. (1997); Singer
(1999); Engel et al., 2001). Indeed, true physiological zero-lag and
near-zero lag coupling patterns may have several explanations.
Macro-scale analysis shows that two cortical areas engaged in bidirec-
tional interaction are likely to generate near-zero phase-lag synchrony as
a result of reciprocal interaction or positively correlated common input
(Rajagovindan and Ding (2008)). Moreover, near-zero lag coupling sce-
nario may also be linked to the effect of detuning of synchronized pop-
ulations with slightly different dynamical properties in order to adapt to a
global rhythm (Pikovsky et al. (2001), Schuster and Wagner (1989)).
951
Therefore, in order to map cortical networks in healthy subjects under a
wide range of experimental conditions and exercise freedom in
fine-tuning the experimental designs it is important to develop synchrony
detection techniques which are unaffected by signal leakage (MEG field
spread, or EEG volume conduction) and that also work for zero- and
near-zero phase lagged coupling. To the best of our knowledge, none of
the interaction measures currently available allow for an assessment of
linear zero-phase coupling that cannot be attributed to spatial leakage
(i.e. true instantaneous coupling). Achieving this is precisely the aim of
the present study, where we derive a new framework for the non-invasive
estimation of connectivity with lag-invariant sensitivity.

Most MEG and EEG data synchrony analysis methods start with
estimating cortical source activation time series, which are subsequently
used for source-space analysis of coupling. This approach leads to
propagation of time series estimation errors to the synchrony metrics
used and causes variable performances depending on the inverse method
chosen (Hincapie et al., 2016, 2017). While this approach (i.e.
source-estimation followed by interaction measurement) might be
inevitable when probing non-linear interaction effects, linear in-
teractions can be studied using promising and intuitive approaches based
on utilization of the generative model of sensor space cross-spectrum. As
a matter of fact, an approach exploiting the spatial structure of the
imaginary part of the observed cross-spectrum via subspace correlation
metrics has been developed some time ago by Ewald et al. (2014).
However, as discussed above, the use of the imaginary part of the
cross-spectrum entails weaker sensitivity for near-zero lag coupling,
compared to larger phase lags.

In the newmethod proposed here, we start with a generative model of
the observed cross-spectrum of sensor signals and utilize the fact that the
sensor space cross-spectrum is a linear combination of the outer products
of interacting source topographies. The coefficients of such linear com-
binations are source-space cross-spectrum values. We then consider the
vectorized form of this model and demonstrate that a simple projection
operation defined in the product space of sensor signals can be used to
alleviate the effects of spatial leakage (SL) on the real part of the cross-
spectrum. Next, we examine the properties of the suggested procedure
by means of Monte-Carlo simulations and show that such debiasing of the
real part of the cross-spectrum delivers detectability of zero phase lag
coupling as well as better sensitivity to near-zero lag coupling compared
to the methods exploiting only the imaginary part of the cross-spectrum.

Moreover, in the last section of this paper, we illustrate the use of the
proposed technique by applying it to a freely available real MEG dataset
recorded during the mental rotation of wrist images. Using the proposed
method, we identified physiologically plausible interhemispheric beta-
band networks connecting the ventral visual pathway with hand-
related sensorimotor areas and also observed gamma band coupling be-
tween hand-related sensory-motor sites, temporal pole and the orbito-
frontal cortex. A more standard approach based on the use of the
imaginary part of coherence only identified the beta-band interhemi-
spheric coupling between the hand representation areas of the sensori-
motor cortex, but not the above-mentioned gamma band interactions.

To the best of our knowledge, the proposed method is the first that
can measure instantaneous leakage-free coupling represented in the real
part of the sensor-space cross-spectrum. In addition, it also overcomes the
reduced sensitivity of previous metrics to near-zero phase-lag coupling.

2. Methods

2.1. MEEG signal model and preliminaries

According to a most general formulation, MEEG data recorded by a
K� sensor array can be written as the following linear combination

xtotðtÞ ¼ AeðtÞ þ GsðtÞ þ BzðtÞ þ nðtÞ (1)

This model is exhaustive and explicitly includes the following four
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components:

� AeðtÞ — the contribution of the stimulus-locked activity to the
measured signal xðtÞ. This activity gives rise to the conventional
evoked response fields that can be estimated from the data by the
stimulus-locked averaging operation. This component is represented
by the matrix of topographies A ¼ ½a1;…; aN � of sources whose time
series eðtÞ ¼ ½e1ðtÞ;…; eNðtÞ �T are phase-locked to the task onset
moments marked by the stimulus signal. Note, that this component
may be responsible for the trivial result of the phase-coupling anal-
ysis. The two sources whose activity is locked to the stimulus will
automatically appear coupled to each other. Such coupling is not
necessarily instantaneous and depends on the mutual morphology of
the two evoked responses.

� GsðtÞ — coherent brain activity that is not phase-locked to an exper-
imental event. This component consists of two parts. The first one
corresponds to the induced brain responses that occur in accordance
with the stimulus, albeit, with random phase w.r.t. the task onset. It is
their envelope that is locked to the stimulus. While the phase of in-
dividual source activations is not locked to the stimulus, the sources
from this component group into clicks with activation phase difference
aligned to the stimulus. These very groups of coupled sources are the
targets of our analysis. The second part contributing to this compo-
nent comes from the background activity produced by a finite set of
brain sources whose coherence is either transient or persistent but
unrelated to the task events. It is important to note that in the cross-
spectrum computed using stimulus-locked averaging, contributions
from sources coming from the first part (event-related) will typically
dominate over those from the second part (spontaneous). Formally,
we can represent both parts of this activity by the matrix of topog-
raphies of the corresponding sources G ¼ ½g1;…; gL� and the time
series sðtÞ ¼ ½s1ðtÞ;…; sLðtÞ �T .

� BzðtÞ— spatially incoherent brain noise representing incoherent part
of the spontaneous brain activity. We also assume that these sources
exhibit neither persistent (over the entire duration of the experi-
ment), nor task-related and nor transient but task unrelated coupling.
If this were not the case, such sources would be captured by the
induced and coherent background activity component. Here we as-
sume that spatially coherent interference originating from the sources
outside the brain (heart artifact, noise from external equipment,
metal implants) has been removed from the data by means of spatial
filtering. Brain noise topographies are B ¼ ½b1;…; bM �, and zðtÞ ¼
½z1ðtÞ;…; zMðtÞ �T are the corresponding time series. The next
component models the additive sensor noise.

� nðtÞ — additive spatially-white random noise vector which we refer
(5)
to as sensor noise. This noise is of non-brain origin and usually cor-
responds to the sensor noise. This is the last component of our
generative model.

Note that our formulation presented above does not limit the number of
sources N; L;M in any of the constituents of our model. Theoretically, the
sources of all the components may exhaust the entire source space.

Also note that it is customary in the analysis of EEG and MEG datasets
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to consider the data in the space of virtual sensors obtained by calculating
the projection coefficients onto a subset of principal directions of the
forward model matrix. The formulation presented here accommodates
this point of view without any conceptual changes. The value of K cor-
responding to the number of sensors will then reflect the number of
virtual sensors corresponding to the number of principal directions
capturing a specific percentage of variance in the original forward model.
Correspondingly, the forward matrices A,G and B of our model will be
replaced by the corresponding products with the matrix containing the
principal component coordinates in the original space.

In what follows in order to avoid the trivial result caused by the ac-
tivity that is phase-locked to the task onset we will be dealing with the
data with removed evoked response component by subtracting its esti-
mate. The estimate of the evoked response component xerðtÞ can be
efficiently done via stimulus-locked averaging. Therefore, in the rest of
this paper we will exclude the evoked response component from
consideration and consider the following observation model:

xðtÞ ¼ xtotðtÞ � xerðtÞ ¼ GsðtÞ þ BzðtÞ þ nðtÞ (2)

Brain activity recorded with MEG and EEG can be described as a non-
stationary mixture of narrow-band components and is best characterized
in the time-frequency domain. Let Xðt; f Þ, Sðt; f Þ, Bðt; f Þ represent time-
frequency transform coefficients of xðtÞ, sðtÞ and zðtÞ correspondingly
obtained via a linear time-frequency transform (e.g. wavelet transform,
short-term Fourier transform). Our observation equation in the time-
frequency domain will read as

Xðt; f Þ ¼ GSðt; f Þ þ BZðt; f Þ þNðt; f Þ (3)

2.2. Sensor-space cross-spectrum generating equation and spatial leakage

Complex-valued sensor-space cross-spectral matrix is defined as the
correlation matrix of the vector of time-frequency transformed data and
can be formally expressed as

CXXðt; f Þ ¼ E
�
Xðt; f ÞXHðt; f Þ� ¼ <ðCXXðt; f ÞÞ þ i �ℑðCXXðt; f ÞÞ (4)

In paradigms with repeated stimulus presentation, the expectation
operation in (4) is approximated by the stimulus-locked averaging
operation CXXðt; f Þ � 1

R

PR
i¼1Xiðt; f ÞXH

i ðt; f Þ where Xiðt; f Þ is the time-
frequency representation of the i-th trial.

By substituting the generative model (3) into the definition of the
cross-spectrum (4), expanding matrix multiplications into sums of col-
umn outer products and grouping real and imaginary components,
similarly to the way it was done in (Ewald et al. (2014)) we obtain:
Here CNNðt; f Þ ¼ EfNðt; f ÞNHðt; f Þg is a diagonal cross-spectral matrix of
the spatially white additive sensor noise, cssij are the coherent activity

source-space cross-spectrum values, elements of Cssðt; f Þ ¼
EfSðt; f ÞSHðt; f Þg that we need to estimate. Also, czzij are the elements of
the source-space cross-spectral matrix of the incoherent brain noise
sources Czzðt; f Þ ¼ EfZðt; f ÞZHðt; f Þg.

It is important to recognize that while stimulus-locked averaging used
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to compute the cross-spectrum will emphasize the task-related activity,
the background networks will still contribute to the stimulus-locked
cross-spectrum with a component whose proportion will not neces-
sarily vanish as the number of trials increases.

Observe that the boxed terms in (5) depend only on the power of the
sources cssii and czzii and represent the spatial-leakage effect (SL). Since cssii
and czzii are real numbers and the auto-terms gig

T
j � gjg

T
i in the summa-

tion in the imaginary part vanish for i ¼ j, the entire SL effect is present
only in the real part of the cross-spectrum. As outlined in the Introduc-
tion, this very observation (Nolte et al. (2004b)) led to creation of the
plethora of methods for non-invasive imaging of within frequency
coupling from EEG and MEG measurements using only the imaginary
part of cross-spectrum, a statistics which is free from the SL effect.

Two issues remain unaddressed by current methods. First, the sum-
mands in the imaginary part of cross-spectrum are modulated by the
imaginary part of the source-space cross-spectrum ℑðcijðt; f ÞÞ. By con-
struction, the imaginary part has maximum sensitivity to 90� phase dif-
ference of the coupled time series. Therefore, the coherent source pairs
with close to zero mean phase difference contribute to the imaginary part
of the sensor-space cross-spectrum with low SNR. Second, while the real
part of the sensor space cross-spectrum will have maximal contributions
from any true zero-phase (or instantaneous) interactions, it is also
contaminated by the spatial leakage effect that adversely affects the
resultant SNR.

One possible way to tackle this problem lies in attempting to selec-
tively and significantly suppress the contribution of the SL to the real part
of the sensor-space cross-spectrum.
2.3. PSIICOS projection

The main step of the proposedmethod is a novel projection procedure
operating in the space of sensor signals cross-spectral matrices, which is
the key manipulation we use to circumvent the spatial leakage effect. In
order to design such a projector we will start with two crucial observa-
tions outlined below. Additional related details can be found in
Appendix.

2.3.1. Vectorized cross-spectrum
Consider the vectorized form of the cross-spectral matrix (5). For

compactness we denote qij ¼ vec
�
gig

T
j

�
¼ gj � gi and hii ¼ vecðbibT

i Þ ¼
bi � bi and obtain:
(6)
Now, all additive elements of this equation are K2 	 1 vectors ob-
tained by stacking all the columns of the corresponding K 	 K matrices,
where K is the number of sensors.

2.3.2. Spatial structure and spatial leakage component subspace
In the above equation (6) the framed terms

PL
i¼1qiic

ss
ii ðt; f Þ andPM

i¼1hiiczzii ðt; f Þ represent spatial leakage (SL) of source power into the
real part of the sensor-space cross-spectrum. Operating in linear algebra
terms we can say that the spatial leakage subspace SSL of the vectorized
cross-spectrum is spanned by spatial leakage topographies qii, i ¼ 1;…; L
and hii, i ¼ 1;…;M. Similarly note that the real-part of the source space
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cross-spectrum modulates power in the S< ¼ spanðqij þ qjiÞ, i 6¼ j, ði; jÞ ¼
ð1;…;M;1;…;MÞ; i > j subspace and the imaginary part of the source-
space cross-spectrum projects into Sℑ ¼ spanðqij � qjiÞ, i 6¼ j, ði; jÞ ¼ ð1;…
;M;1;…;MÞ subspace of the sensor-space cross-spectrum, see also
(Ewald et al. (2014)). In what follows we will refer to S< and Sℑ as real
and imaginary true coherence subspaces respectively.

2.3.3. Building and applying the projector
In (6) we assume L sources of coherent brain activity. L is likely to be

much smaller than M: i.e. task-induced source activities are going to be
fewer in number than brain noise generators. The brain noise termPM

i¼1hiiczzii ðt; f Þ collects a relatively large population of sources whose
distribution varies over the course of the experiment, the longer the
experiment the greater M and the grid of brain-noise sources may theo-
retically cover the entire cortex. The SL effect caused by these task un-
related sources masks the contributions from the genuinely coherent
task-related and task unrelated pairs. An efficient way to address this
issue lies in designing a projector into the subspace orthogonal to the
spatial leakage subspace SSL of all potential sources. To do so

� Start from the whole head (cortex) forward model matrix G ¼ fgijg;
i ¼ 1;…;K; j ¼ 1;…;D corresponding to all D grid nodes containing
sources with fixed orientation (see Appendix for extension to arbi-
trary source orientation case). First form the K2 	 D matrix F of SL
topographies qii ¼ vecðgigTi Þ; i ¼ 1;…;D:
F ¼ ½q11;q22;…;qDD� (7)

� Form projection matrix away from the SL subspace as P ¼ I� URUT
R

where UR ¼ ½u1;u2;…;uR� is a matrix of the first R left singular
vectors of F spanning the most powerful R-dimensional subspace of
SSL. The selection of the rank R of the projection operator is discussed
below.

� Use projection operator P to suppress the contribution of the SL effect
to the sensor-space cross-spectrum vecðCXXÞðt; f Þ as follows:

vecðCXXÞ?SLðt; f Þ ¼ PvecðCXXÞðt; f Þ (8)

Since the outlined PSIICOS projection procedure will affect the S< as
well we need to achieve some balance between the extent to which we
mitigate the SL and howmuch the power in the S< subspace is preserved.
We manage this trade-off by adjusting the choice of R, the rank of the
projection operation. The extent to which the spatial leakage component
is suppressed depends solely on the geometric properties of the head-
sensor array system. The informed choice of projection rank parameter
R used in Step 3 above can be determined considering the changes of
suppression power in the SL and S< subspaces as a function of projection
rank as shown in Fig. 14 of the Appendix. Since the two subspaces
overlap and because the PSIICOS projector is built using the SVD pro-
cedure that concentrates most power in the first components, the PSII-
COS projection based on the lower rank values will primarily target the
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SL components and the rate of decay of power in the SL subspace will be
higher than that in the S< subspace. Importantly, for some specific value
of projection rank R
 the two curves become nearly parallel which cor-
responds to the equal decay rate meaning that the PSIICOS projection
empty power from the SL and S< subspaces to the equal extent, see Fig. 14
a). This critical value of projection rank can be better appreciated from
the plot in Fig. 14 b) where we show the mean difference between the
suppression factors of SL and S< components as a function of PSIICOS
projection rank for the three different virtual sensor space dimensions. It
can be seen that when operating in the 30-dimensional virtual sensor
space the difference of suppression factors exhibits a clear maximum
around for R
 ¼ 125. This low rank of VS is not recommended, however,
for its relatively low difference in the suppression of power in S< and SL
subspaces. According to these graphs, operating in 60 dimensional VS
space we should choose R* in the 150–200 range to achieve the
maximum suppression difference. Using 80 VSs, we should opt for R
 in
200–250 range. Our experiments with analysis of synthetic and real data
show that variations of the projection rank parameter within 20% of the
optimal value do not qualitatively affect the results. The optimal value of
R* will experience moderate variability across different types of MEG
systems. Therefore, for better performance, the value of R can be ob-
tained via similar analysis.

Note, that the proposed procedure does not require an estimation of
source power from the particular dataset at hands. We compute P based
on the entire set of source-space elements (as represented in the forward
model matrix G) and therefore we have addressed the SL contribution of
all sources including brain noise generators as it is expressed in the
observation model (2). As a consequence, the selection of R* for the P
operator does not depend on the measurements and is uniquely deter-
mined by the forward model.

Although in what follows we will refer to the matrix CXX?SLðt; f Þ as
PSIICOS projected cross-spectrum or SL debiased cross-spectrum it is
important to recognize that CXX?SLðt; f Þ is not a proper cross-spectral
matrix. It is no longer positive definite (due to suppression of the diag-
onal terms) and no normalized measure can be calculated from this
projected matrix. If normalization is needed, however, it is in principle
possible to do so using source power estimates cii from the original matrix
CXXðt; f Þ.
2.4. Phase shift independent estimation of the source-space cross-spectrum

We used equations (7) and (8) in order to derive the projector into the
subspace orthogonal to SSL. Once we have this projector we can return to
the much more compact equation (5) and after applying the projection
operation write

vec
�
C?�ðt; f Þ ¼

XL

i¼1

XL

j¼1

q?
ij c

ss
ij ðt; f Þ þ εðt; f Þ (9)

In the above q?
ij ¼ Pqij are the projected interaction topography

vectors and εðt; f Þ is the noise term encapsulating the leftovers of the
spatial leakage component from the sources of interest and incoherent
brain-noise that survived the rank-truncated projection away from the SL
subspace:

εðt; f Þ ¼ P
XM
i¼1

hiiczzii ðt; f Þ þ P
XM
i¼1

qiic
ss
ii ðt; f Þ þ PCNNðt; f Þ (10)

Consideration of the vectorized form of the cross-spectral matrix
allowed us to construct the efficient projection procedure for suppressing
the undesirable SL components in the real-part of the sensor-space cross-
spectrum. Additional benefit of the vectorization based view is that it
allows us to appreciate the fact that equation (9) is simply a linear
regression equation, similar to the one we use when solving the source
estimation problem, but formulated in the product space of sensor
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signals. Instead of source activation time-series (as in (2)) or their time-
frequency profiles in the regular equation the unknown regression co-
efficients in equation (9) are the time-frequency profiles of the source-
space cross-spectral coefficients. Now we can estimate cssij ðt; f Þ with a
plethora of methods developed for solving the classical inverse problem
in MEG and EEG. In this work in order to demonstrate the performance of
the suggested projection procedure and perform ROC analysis based on
the simulated source-space ground truth we decided to choose the in-
verse mapping procedure based on projecting the data onto the
normalized interaction topography vectors.

We perform a simple scan by computing the inner product of the
corresponding projected interaction topographies q?

ij at each time-
frequency slice of the vectorized and projected cross-spectrum matrix

vecðC?ðt; f ÞÞ to obtain ρijðtÞ ¼ hq?max
ij =

���
���q?max

ij

���j2;vecðC?ðt; f ÞÞi.
The quantity ρijðtÞ uses q?max

ij interaction topography maximizing the
ρijðtÞ over all possible orientations of the i-th and the j-th source. Based on
the value of ρijðtÞwe can judge about the presence of a pair of interacting
sources at the coordinates corresponding to the i-th and j-th node at time
instance t. To ensure the stability of the observed distribution of ρij the
bootstrap resampling procedure adopted from Darvas et al. (2005)
described in section 3 can be used. Block Est. source-space cross-spectrum
in Fig. 1 illustrates this scanning procedure. The SL-free sensor-space
cross-spectrum is projected onto appropriately normalized PSIICOS

projected interacting topography vectors (q?
ij ¼ P

�
gj � gi

�
) to yield an

estimate of the source-space cross-spectral coefficient, much like dipolar
time series are obtained by projecting the data onto the normalized
dipole topographies.

The proposed approach for calculating the source-space connectivity
values by a simple regression of the SL-debiased cross-spectrum onto the
elementary network topographies is alternative to the most commonly
used two-step procedure where first, source time series are estimated
using either MNE or a beamforming technique (such as LCMV) and then a
connectivity measure is calculated. Note, however, that the proposed
regression procedure is optimal only in case εðt; f Þ is spatially white and
the active network topographies q?

ij are orthogonal. Therefore, in order
to take full advantage here more sophisticated source estimation
methods developed in the field should be adopted to operate in the K2

dimensional space of elementary network topographies.
The overall data processing flow is illustrated in panel c) of Fig. 1. In

addition to the standard steps, it includes building the PSIICOS projector
and applying it to the sensor-space cross-spectrum. The same projection
is applied to the topographies of elementary networks to be used in the
source-space scan to obtain the estimates of the source-space cross-
spectral coefficients.

2.5. Graphical illustration of the algorithm

The diagram in panel a) of Fig. 1 illustrates the idea behind the
proposed projection operation by showing the relationship between the
vector components that comprise sensor-space cross-spectrum. It is
straightforward to show that S<?Sℑ, Sℑ?SSL and that S< \ SSL 6¼ ∅.
Physically, the intersection of S< and SSL is primarily occupied by the
contributions from the real-part of cross-spectrum of functionally
coupled sources located close to each other whose activations can be
characterized by zero or close to zero mean phase difference.

On panel b) of Fig. 1 we illustrate the proposed projection procedure
and the way it affects the original cross-spectrum CXX . CXX can be
decomposed into the two orthogonal real and imaginary components,
<ðCXXÞ and ℑðCXXÞ. The projection operation leaves the imaginary
component of the original cross-spectrum intact. In turn, the real
component of the sensor-space cross-spectrum, <ðCXXÞ, can be decom-
posed into the spatial leakage component and its complement P<ðCXXÞ
that belongs to the real true coupling subspace S<. The aim of the



Fig. 1. a) — The spatial leakage subspace and the real
part subspace overlap and are orthogonal to the sub-
space of the imaginary component of the cross-
spectrum. The intersection of the two former sub-
spaces contains contributions from the spatial leakage
and from the real-part of the non-diagonal cross-spec-
trum elements for the sources located close to each
other whose activity can be characterized by a zero or
close to zero value of mean phase difference. Note that
the three subspaces have common to all of them null
vector. However, this null vector is the only element of
S< [ Sℑ. To reflect this fact we highlighted the center of
the diagram that marks the null-vector common to all
three subspaces. b) — The effect of the proposed pro-
jection procedure on the original cross-spectral vector
CXX . The dashed red arrow represents the result of the
projection of the real part of the original cross-spectrum
into the subspace orthogonal to the spatial leakage
subspace. It is important to recognize that SSL and S<

are not orthogonal and there is always a trade-off be-
tween the extent to which the SSL power is canceled and
the degree of suppression of the signals in S<. The
dashed red arrow represents the projected complex
cross-spectrum that can be represented as a sum of the
imaginary part that is left intact by the projection and
the real part of the original cross-spectrum CXX pro-
jected into the complement of the SSL

c) General view of the processing flow that in addition
to the standard steps includes building the PSIICOS
projector and applying it to the sensor-space cross-
spectrum. The same projection is applied to the topog-
raphies of elementary networks to be used in the
source-space scan that yields the estimates of the
source-space cross-spectral coefficients. d) The main
component of the proposed method is PSIICOS projec-
tion that is based on an estimate of the spatial leakage
subspace using the vectorized outer products of all
source topography vectors, vecfgigTi g ¼ gi � gi, i ¼ 1;
…;D. The projection is calculated using the subset of R
left singular vectors and applied to the vectorized esti-
mate of the band-specific sensor space cross-spectrum.
Then, in order to obtain the estimates of the source-
space cross-spectrum elements, the SL-free sensor-
space cross-spectrum is projected onto appropriately
normalized PSIICOS projected interacting topography
vectors calculated as q?

ij ¼ Pðgi � gjÞ, ði; jÞ ¼ ð1;…;M;

1;…;MÞ; i > j to yield and estimate of the source-space
cross-spectral coefficient.
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projection is to remove from the real part of the cross-spectrum vector the
contribution lying in the spatial leakage subspace SSL.

The real true coupling S< and the spatial leakage subspaces SSL are not
orthogonal. Therefore, while the projection operation dominantly targets
the spatial-leakage components it nevertheless also affects the vectors in the
real true coupling subspace. As a result, we obtain a debiased, predomi-
nantly SL-free cross-spectrum PCXX that represents all range of coupled
sourceswith somewhat diminished contribution from those located close to
each other and with zero or near-zero phase coupling (since closely located
sources generally have correlated topographies, their real-part contribution
to the cross-spectrum CXX to a larger extent resembles that of the signal
leakage subspace; therefore the projection operator will affect the real-part
contribution of the close-by sources the most).

Graphical illustration of the steps aimed at building the PSIICOS
projector are outlined in the Building PSIICOS projector block of the dia-
gram depicted in panel d) of Fig. 1. It is based on an estimate of the spatial
leakage subspace using the vectorized outer products of all source
topography vectors, vecfgigTi g ¼ gi � gi, i ¼ ð1;…;DÞ. The projection is
calculated using the subset of R left singular vectors and applied to the
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vectorized estimate of the band-specific sensor space cross-spectrum.

3. Bootstrap resampling for reproducibility testing

In order to check for stability of the observed solutions a bootstrap
procedure similar to that described in Darvas et al. (2005) can be used.
We first generate B bootstrap cross-spectral time series (CT) obtained by
averaging epochs whose indexes are generated by the uniform sampling
with replacement procedure. Then on each bootstrap iteration, a small
number m of edges corresponding to the networks with the highest
source space scan values are grouped into several clusters according to
the Spatial Pairwise Clustering (SPC) procedure from Zalesky et al.
(2012). For each identified cluster a centroid connection is calculated by
within cluster averaging of the beginning and end coordinates of the line
segments with properly picked mutual orientations. These cluster cen-
troids characterized by a line segment terminated by two points on the
cortical surface, are retained from each of the B bootstrap iterations and
collected. In order to quantify the spatial spread of thus collected cluster
centroids, we define the distance between a pair of connections as the
minimal sum of Euclidean distances between their terminal points, where



Fig. 2. Three simulated pairs of coupled sources. a) — the spatial topography of
the simulated sources, b) — temporal profiles of coupling for each of the three
pairs of sources.
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the minimum is chosen out of the two values corresponding to the two
possible mutual orientations of the pair of connections. Finally, according
to the distance function described above, we define the reproducibility
index η as reciprocal of the averaged across all B resamples distance from
a connection to its nearest neighbor.

4. Monte-Carlo simulations

In order to compare the proposed technique against other relevant
methods for detection of coupling in source space we ran a set of realistic
simulation studies. We used Freesurfer-extracted cortical surface with
15000 vertices and calculated the high-resolution forward model matrix
GHR with two columns per vertex corresponding to the two orthogonally
oriented dipoles in the 2-D space orthogonal to the right singular vector
corresponding to the smallest singular value of the original K 	 3 forward
model matrix of the vertex. We simulated event-related field (ERF)
experiment data with 100 repetitions (epochs) of the task. The induced
activity of coupled sources was modeled with two 10Hz sinusoidal
functions with random phase w.r.t. stimulus onset but probabilistically
connected via phase difference term δϕ sampled from a random distri-
bution taking values in the ½ � π=4; π=4� range.

We modeled brain noise with Q ¼ 1000 spatially coherent, task-
unrelated cerebral sources whose locations and time series varied with
each epoch. Source locations matched nodes of the high-resolution
cortical surface (15000 vertices). The activation time series were
narrow-band signals obtained via zero-phase filtering of realizations of
Gaussian (pseudo)random process by the fifth order band-pass IIR filters
in the bands corresponding to theta (4–7Hz), alpha (8–12Hz), beta
(15–30Hz) and gamma (30–50Hz, 50–70 Hz) activity. Their relative
contributions were scaled in accordance with 1=f characteristic of the
realistic MEG spectrum. We scaled the brain noise components to match
typical signal-to-noise ratio of real-life recordings. To project these
sources into the sensor space, the corresponding columns of GHR were
linearly combined to represent the orthogonally oriented dipole in each
of the Q chosen nodes. We simulated 100 epoch ERF data and for each
epoch a new randomly picked set of noisy sources was chosen and new
noisy time series with approximately 1=f spectrum were generated. We
defined the SNR in our simulated data in the sensor space as the ratio of
Frobenius norms of data matrices of the induced and brain noise com-
ponents filtered in the band of interest (8–12 Hz).

We computed frequency specific sensor-space cross-spectral matrix
by averaging over epochs the outer products of channel time series
Fourier coefficients that fall in the 8–12Hz frequency range. In order to
simulate the real-life circumstances when source coordinates do not
necessarily match a vertex in a mesh, we used the high-resolution cortex
only to simulate the data. We employed the 10 times sparser represen-
tation of the cortex with 1503 nodes for construction of the PSIICOS
projection operator and for the source-space elementary networks scan
according to the workflow in Fig. 1.

As a threshold-free performance metrics, we used the Precision-Recall
(PR) and Receiver Operating Characteristics (ROC) curves. The
Precision-Recall metrics suites well the situation when we have a small
number of true positives and the number of choices is large. The ROC
curve, sensitivity vs 1 - specificity plot, in this case is informative only for
extremely high specificity values. More details and the definition of these
two metrics can be found in section 8.4 of the Appendix.

Thus, for each MC trial, we calculated a ROC curve then averaged
these ROC curves over the entire set of 1000 Monte-Carlo trials. We
considered two different SNR values (SNR1 ¼ 1:0 and SNR2 ¼ 0:2). Since
the proposed method is designed to achieve uniform performance for all
values of the phase-lag between the coupled sources we have performed
separate studies for two different mean phase-lag values: ϕ ¼ π=2� π=20
and ϕ ¼ π=20 radians. We have also explored the performance for a grid
of mean phase lags.

We first used only one pair of interacting sources placed at random
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locations on the high-resolution cortex at each MC trial. To simulate the
transient nature of such a network within each trial we modulated this
synchronized activity by a window function wðtÞ that coincided with the
one corresponding to Simulated profile 1 as depicted in Fig. 2 and acti-
vated the network only during the first half of each trial. At eachMC trial,
we generated a 100 epoch dataset with a fixed spatial configuration of
target sources and varying from epoch to epoch constellation of brain
noise sources. For detection of networks, we used the entire trial time
range to mimic the situation when we don't know the interval during
which the network is active.

In the second study, we simulated the data with three concurrently
active networks having a spatial and temporal structure as illustrated in
Fig. 2. The main challenge here was to resolve the three networks with
the overlapping windows of activity.

We compared PSIICOS against three other methods for detection of
synchronous sources. The first method we compare PSIICOS against is
the Dynamic Imaging of Coherent Sources (DICS) Gross et al. (2001). The
method consists in applying a frequency domain beamformer to the
Fourier coefficients of the multichannel sensor-space data followed by
computing the coherence values of thus extracted Fourier domain rep-
resentation of the source space signals. For each pair of sources, the
largest eigenvalue of the elementary source-space cross-spectral matrix
normalized by the source power estimates is then used to quantify the
coherence between a pair of sources. To exclude spatial leakage effects,
we used a modified version of this technique where we only exploit the
imaginary part of the source-space cross-spectral matrix. This modified
DICS approach called further iDICS serves as the second method to which
we compare PSIICOS. The third method we use in our comparative study
of PSIICOS is Geometric Correction Scheme (GCS) approach developed
byWens et al. (2015). This method is conceptually most closely related to
the technique proposed here and suggests to apply a model based
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geometric transformation to the second source data to remove the spatial
leakage effect from the first source. As in the original paper, we use
minimum norm estimate (MNE) and exploit known brain-noise covari-
ance matrix, the information not required by PSIICOS.

5. Real data analysis

We applied the proposed technique to real MEG data that were ac-
quired in a mental rotation study (De Lange et al., 2008) from which
single-subject data were made publicly available at Biomag 2010 Data
Analysis Competition. During the recording, the subject had to report by
pressing one of two buttons, the laterality corresponding to the hand
drawing displayed on the screen. The displayed drawings of the hands
were isometric images of a wrist rotated at different angles with respect
to the observer (subject). The dataset contained 800 trials with ran-
domized rotations and laterality split into 5 blocks. Each trial comprised
the following sequence of events: fixations cross (3 s), hand drawing
displayed until the decision was made, fixation cross (0.5 s) with color
indicating the feedback (red — wrong, green — correct). Subjects spent
on average 70min in the MEG scanner.

During the experiment, brain activity was recorded using the whole-
head MEG with 151 axial gradiometers (VSM/CTF Systems, Port
Coquitlam, British Columbia, Canada). The analog signals were low-pass
filtered at 300Hz and sampled at 1200Hz. After bad segments removal
and artifact rejection, the total of 259 epochs corresponding to the
stimuli displaying images of the left hand remained for the further ana-
lyses. The trials were of variable length (from 1.52 to 2.08 s) and were
realigned so each epoch started 0.5 s prior to the image appearance on
the screen. We analyzed 1 s of data past the stimulus.

In order to scan through the range of frequencies we considered the
following standard bands: theta (4–8 Hz), alpha (8–12Hz), beta
(16–24Hz), lower gamma (30–60Hz) and the higher gamma band
(65–85Hz) (e.g. Moran et al. (2010); Caetano et al. (2007); Casanova
et al. (2017); Lee et al. (2007)).

We first applied the zero-phase FIR filtering to isolate the frequency
bins. Then, by averaging across epochs of the outer products of Hilbert-
transformed data we computed time-resolved cross-spectral tensors and
reshaped them to obtain K2 	 T vectorized cross-spectral matrices of the
K ¼ 151 sensor signals. Next, we applied the PSIICOS projection, corre-
sponding to the rank R ¼ 150 which was determined based on the con-
siderations outlined in section 2.3. Importantly, R values ranging from
100 to 250 were explored with little impact on the overall results.

We then analyzed separately real and imaginary parts of the vector-
ized time-resolved cross-spectrum. Instead of simple averaging over time-
axis, in order to discover the spatial structure, we first performed singular
value decomposition (SVD) of the real and imaginary parts of the
PSIICOS-projected vectorized time-resolved cross-spectrum. We then
performed source space scan for each of the first two left singular vectors
of the real and imaginary parts of the PSIICOS-projected cross-spectrum
using the dense source-space grid with 15000 vertices.

In order to check for stability of the observed solutions, we used the
bootstrap procedure described in Section 3 withm ¼ 30 and B ¼ 100 and
plotted the reproducibility index η. The networks are then shown only for
the reproducible bands and components with the edges whose ends
correspond to the coupled cortical regions. The edges whose nodes
appeared to be closer than 1 cm apart were plotted in the same color.
Also, for each reproducible component, we plot its temporal profile as the
right singular vector of the time-resolved cross-spectrum.

6. Results

6.1. Effect of projection on the source space cross-spectrum components

As evident from the diagram in Fig. 1 because of the orthogonality of
Sℑ and SSL subspaces the projection operation does not alter the
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imaginary part of the cross-spectrum. Conversely, the components from
S< subspace carrying information about the real part of source-space
cross-spectrum do get affected by such a projection operation and by
removing the SL variance from the sensor-space cross-spectrum we will
inevitably remove some part of the variancemodulated by the real part of
the source space cross-spectrum non-diagonal elements. The perfor-
mance and usability of the proposed PSIICOS projection in suppressing
the spatial leakage contribution to the real part of the sensor space cross-
spectrum critically depends on the following two factors:

� The PSIICOS projection should maximally suppress the power of
components in the SL subspace while minimally affecting that in the
true real coherence subspace.

� As it is the case for all inverse solution frameworks the PSIICOS
projection heavily depends on the forward model and therefore, the
inevitable inaccuracies of the forward model encountered in real-life
(Mosher et al. (1999)) will adversely affect the performance of the
proposedmethod. Reasonable errors in forwardmodeling should lead
to only slight deterioration of performance.

The extent to which these desired properties hold depends on the
phenomenological characteristics of the sensor array and magnetic field
topographies produced by the brain sources. In this section we describe
numerical simulations addressing these issues.

Clearly, the attenuation of the variance in the S< subspace is most
pronounced for sources with correlated topographies. To explore the
dependence of attenuation on the correlation coefficient between the
topographies of the coupled sources for each combination of network
node indexes i and j (i 6¼ j) we calculated the norms of the product-space
topographies vecðgigTi þ gjg

T
j Þ, vecðgigTj þ gjg

T
i Þ and vecðgigTj � gjg

T
i Þ

spanning the three subspaces SSL, Sℑ and S< of the sensor-space cross-
spectrum, see Fig. 1. We did so before the projection and after the pro-
jection operation and presented the results in Fig. 3 using the scatter plot.
For each two-node network with nodes in the i-th and the j-th locations of
the cortical surface, we plot three points color-coded using the three
different (red, blue, yellow) palettes. The gradations of the blue color are
used to depict the norm of the product-space topography vector qij þ qji

spanning the S< subspace of the sensor-space cross-spectrum. The gra-
dations of the red color are used to depict the norm of the product-space
topography vector qij � qji spanning the Sℑ subspace of the sensor-space
cross-spectrum. Finally, the gradations of the yellow color are used to
depict the norm of the product-space topography vector qii þ qjj spanning

the SSL subspace of the sensor-space cross-spectrum under the assump-
tion of equal power of the i-th and j-th source. The position of each
colored point along the x-axis for panels a), b) is determined by the
correlation coefficient of topographies gi and gj of the dipolar sources
comprising the elementary network. We have also plotted the same data
but used source grid node distance for the x-axis, see Fig. 3. Color satu-
ration reflects the density of the scattered points.

As we can see from the diagram on panels a) and c) of Fig. 3 before the
projection operation the SL component (yellow) dominates the sensor
space cross-spectrum. After applying the described projection operation
of rank 500 (panels b) and d)) we can observe that the significant
reduction in the SL component power for all values of the dipole to-
pographies correlation coefficient. Because the SSL and S< subspaces
intersect the projection procedure also reduces the power in the S<

subspace as it can be seen by comparing the blue scatter between s the
left and the right panels. However, the reduction in the norm of the
product-space topography vectors spanning S< is significantly less than
the attenuation suffered by the SL subspace topography vectors.

In Appendix section 8.3 we explored the effect of forward model
inaccuracies on the performance of the proposed projection procedure. It
turns out that while the inaccuracies in the forward model do cause
deterioration of the performance of the proposed projection scheme, for



Fig. 3. Product-space topography norms for the three subspaces of the sensor-space cross-spectrum before and after the PSIICOS projection as a function of the
correlation coefficient of coupled nodes source topographies (panels a) and b)) and the distance between the pair of elementary network nodes (panels c) and d)).
Before the projection (panels a), c)) the sensor-space cross-spectrum is dominated by the source power component (yellow). After the projection (panels b), d)) the
manifestation of the source power on the sensors gets reduced by more than a factor of 25 on average. We are also witnessing the inevitable but significantly less
dramatic attenuation (1.6 in the mean value) of the real-component product-space topographies.
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typical MEG forward model noise levels of 10% (Mosher et al. (1999))
the projection yields almost the same value of the SL power attenuation
and only about 20% of the additional decrease in the S< subspace
variance.

6.2. Comparative performance simulation study

In this section, we will describe our results comparing the proposed
PSIICOS technique against three other methods outlined in Section 4 for
detection of synchronous sources: DICS, iDICS and GCS.

6.2.1. Monte-Carlo study of receiver operating characteristics
To quantify the putative improvement in detection characteristics

achieved by PSIICOS for various spatial network configurations, we
performed a Monte-Carlo study according to the principles described in
section 4.

As we can see from Fig. 4 for each of the simulation conditions
PSIICOS consistently outperforms the other methods and allows
achieving reasonable performance invariant to the phase lag value. As
judged by the ROC curve for mean phase lag of ϕ ¼ π=2� π=20 the iDICS
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delivers performance comparable to that of PSIICOS. For ϕ ¼ π=20 iDICS
fails to adequately detect the networks due to significantly decreased
SNR of representation of nearly zero-phase lag coupling in the imaginary
part of the cross-spectrum. The MNE GCS technique performs better than
the DICS approach for the high SNR case, however, both of the tech-
niques fail to deliver a reasonable performance in the low SNR case. At
the same time the PSIICOS technique manages to retain the performance
for both SNR values. The reason for such an improved performance lies in
the use of the proposed projection operation that frees the real part of the
cross-spectrum from the undesired SL component leaving only the
component modulated by the real part of the cross-spectral coefficient of
the two sources. As outlined earlier, for near zero mean phase lag this
very component captures the information about the coupling and PSII-
COS is able to detect it.

In the lower SNR case, the greater gap between PSIICOS's perfor-
mance for two different mean phase lag values can be due to the presence
in MC trials of networks with nodes located close to each other so that the
real part of the real-interaction term gets significantly affected by the
projection operation, see Fig. 14. The other techniques, however, prac-
tically stop operating under these conditions for nearly instantaneous



Fig. 4. Precision-recall (a,c) and ROC (b,d) curves comparing the network detection performance PSIICOS vs DICS, iDICS and GCS MNE techniques for two different
SNR values based on 1000 Monte-Carlo trials.

Fig. 5. Spatial structure of source-space scan
for the simulated data depicting top 0.1% of
connections with the highest value of the
source-space connectivity statistic for PSII-
COS and three other methods. As one can see
only the PSIICOS technique retains reason-
able performance across the whole range of
the studied conditions. Consistent with our
previous results the iDICS technique perfor-
mance nearly pars that of PSIICOS in the
close to π=2 phase lag case. The MNE GCS
technique for the high SNR case quite reliably
picks the two frontal networks for both
values of the mean phase lag but completely
stops operating for the low SNR and near
zero phase lag case. For the close to π=2
phase lag case under the low SNR it picks up
only the middle network (the one with the
highest individual SNR) and generates a large
number of false positives.
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coupling and low SNR scenario.

6.2.2. Detection of multiple concurrently active networks
In this section we describe the results obtained by simulating three

networks whose activity overlapped in time, as illustrated in Fig. 2. To
this end we filtered the simulated data in the 8–12Hz band and calcu-
lated the time varying cross-spectral tensor by averaging over trials the
outer product of Hilbert transform coefficients of the data at each time
slice. We thus obtained matrix CXX , see equation (5), which is ready to be
used in PSIICOS analysis pipeline.

Fig. 5 shows the source-space spatial structure of the simulated data
scan depicting top 0.1% of connections with the highest value of the
source-space connectivity statistic for PSIICOS and three other methods.
As one can see only the PSIICOS technique retains reasonable operation
for all range of the studied conditions. Consistent with our previous
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results the iDICS technique performs nearly as well as PSIICOS in the
close to π=2 mean phase lag case. The MNE GCS technique for the high
SNR case quite reliably picks the two frontal networks for both values of
the mean phase lag but completely stops operating for the low SNR and
near zero mean phase lag case. For the close to π=2 mean phase lag case
under the low SNR it picks up only the middle network (the one with the
highest individual SNR) and generates a large number of false positives.

Regressing the time-resolved and vectorized sensor-space cross-
spectrum projected away from the SL subspace onto the mean network
topographies obtained by averaging within each of the three clusters of
edges in Fig. 5 allows recovering the synchrony profiles. Fig. 6 depicts the
time windows during which each pair of interacting sources is active.
Here, we exploited the vectorized form of the time-resolved cross-spec-
trum and after debiasing it by removing the spatial leakage component
used the simplest possible ‘‘source’’ timeseries estimation procedure. The



Fig. 6. Temporal profiles of the simulated networks for two phase lag values and for two different SNRs obtained by PSIICOS. Solid lines represent true simulated
profiles and dashed lines correspond to the recovered traces.

Fig. 7. Comparative analysis of PSIICOS against three other methods in the task of detecting three simultaneously active simulated networks. Panels a, c show the
entire precision-recall plot while panels b), d) focus on the 0–0.15 range.
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procedure of obtaining these synchrony profiles resembles that used to
calculate the time series in the dipole fitting task with the only difference
that here we operate in the product space of the coupled source
topographies.

Further, to systematically illustrate the comparative analysis of the
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four techniques considered in this paper, we are showing in Fig. 7 the
modified precision-recall plots where as described earlier we encoded
with marker size the number of true networks the detected connections
come from. The left half of the plots shows the entire precision-recall plot
and panels b) and d) focus on the 0–0.15 range. As we can see



Fig. 8. Bootstrap analysis of PSIICOS results stability for two phase lag values and for two different SNRs.
a), b), d), e) – stable networks – are shown with edges whose ends correspond to the coupled cortical regions. The saturation of the color used to plot the edge and the
node is directly proportional to the reproducibility parameter η assessed with the bootstrap procedure. The edges whose nodes appeared to be closer than 1 cm apart
are plotted in the same color. Panels c) and f) show reproducibility index η for two mean phase lag values obtained using the described bootstrapping procedure for
two different SNR values, SNR¼ 0.2 and SNR¼ 1 respectively.

Fig. 9. Performance of PSIICOS as a function of mean phase lag, a) - low SNR and b) - high SNR case. For the close to π=2 mean phase lag values the information about
the interacting sources is primarily contained in the imaginary part of the cross-spectrum. Thus, the use of the imaginary part only (equivalent to iDICS) allows
achieving high performance which deteriorates as the mean phase lag gets reduced. On the contrary, for close to zero mean phase lags the coupling information is
primarily present in the real part. The real part is contaminated by the SL component that can be removed using the PSIICOS projection. Then, the debiased real part is
used for detection of networks with close to zero mean phase lag (blue curves). The simultaneous use of both real and imaginary components allows achieving uniform
performance over various mean phase lag values (orange curve).
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qualitatively these plots confirm the conclusions based upon the visual
analysis of the spatial structure of the detected connections depicted in
Fig. 5.

The metrics used so far assessed the performance in a threshold free
manner. When applied to real data we suggest to use the bootstrap
procedure described in 2 to assess the stability of the observed network
patterns. The following figure illustrates the results of the proposed
bootstrapping procedure as applied to the realistically simulated data
(see Fig. 8).

As demonstrated by our simulations the proposed approach allows
achieving superior performance in detecting networks of coupled sources
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with both near-zero and close to π=2 mean phase lags. It turns out that
PSIICOS technique provides a uniform detecting performance on the
entire range of mean phase lag values. To illustrate this point we applied
the proposed technique to the analyses of the simulated 3-networks data
for a grid of mean phase-lag values in the 0 to π=2 range. We did so for
two SNR values and compared three different approaches: using the
imaginary part only (iDICS), the projected real-part only and the total
projected cross-spectral matrix (PSIICOS). Fig. 9 shows the observed
performance quantified as precision-recall areas under curve (AUC) vs
mean phase lag values. For the close to π=2 phase lag values the infor-
mation about the interacting sources is primarily contained in the



Fig. 10. Bands with most reproducible networks as determined by the bootstrap analysis performed by repeatedly selecting a subset of epochs, computing the cross-
spectrum tensor by averaging over these epochs and applying the PSIICOS procedure. The bars correspond to the reproducibility index computed as inverse average
distance to the closest neighbour for singular networks found in the real and imaginary parts of the cross-spectrum for the four most prominent singular components
(1–4) of the real (blue) and imaginary (yellow) parts of the PSIICOS projected vectorized cross-spectrum.
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imaginary part of the cross-spectrum. Indeed, see Fig. 9, the use of the
imaginary part only allows achieving high performance for close to π=2
mean phase lag values. For the realistic SNR ¼ 0:1 the performance
briskly deteriorates as the mean phase lag angle departs π=2 neighbor-
hood. On the contrary, for close to zero mean phase lags the coupling
information is primarily present in the real part. The real part is
contaminated by the SL component that can be efficiently removed by
the proposed projection procedure. Then, the projected real part can be
used for detection of networks with close to zero mean phase lag, but
performance of the SL-debiased real part also deteriorates as the mean
phase lag value leaves the realm of nearly zero mean phase lags. The
proposed PSIICOS technique allows for the simultaneous use of both SL-
debiased real and imaginary components to achieve a uniform perfor-
mance over various mean phase lag values.

6.3. Application to real data

While the focus of the present study is to outline a novel methodo-
logical framework for connectivity estimation and validate it using
simulated MEG data, it is important to illustrate how the method behaves
with real experimental MEG data. Yet a full group-level analysis using
real data and systematic comparisons with other methods on the same
dataset would be beyond the scope of this methodological article. We
therefore sought to illustrate the application of the PSIICOS technique on
sample MEG data and evaluate its robustness. We are aware that real data
cannot be used as a benchmark for ground truth as can be done with
simulations, but they can illustrate realistic application of the technique
and assess the robustness of the method with regards to data variability
for instance by resampling the available data using bootstrapping.

Band specific analysis revealed the distribution of reproducibility as
shown in Fig. 10 where the inverse mean distance to the nearest neigh-
bour values were plotted in 5 frequency-bin groups for the real and
Fig. 11. Spatial structure and temporal dynamics of the most reproduc
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imaginary part components shown side-by-side. As we can see, networks
found using the real part of the cross-spectrum appear to be more
reproducible than those obtained from the imaginary part. Most repro-
ducible networks from the real part are found in the theta, beta and both
gamma bands. The reproducible networks from the imaginary part of the
cross-spectrum belong to alpha, beta and higher gamma bands. It is
noteworthy that while real component based networks are in general
characterized by higher reproducibility, it is not the case for the alpha
band. Figs. 11–13 show the spatial structure of the networks found in
these bands with the edges whose ends correspond to the coupled cortical
regions. The edges whose nodes appeared to be closer than 1 cm apart
were plotted in the same color. Overlapping edges were depicted with
larger markers and line-width parameter. Edge transparency was
adjusted in accordance with the density of edges in a cluster including the
overlaps. Also, for each reproducible component we plot its temporal
profile as the right singular vector of the corresponding part of the time-
resolved cross-spectrum.

Analysis of the real-part of the cross-spectrum revealed the following
networks with dominantly low phase lag coupling. In the theta band,
Fig. 11a we see the networks connecting right orbito-frontal region
implicated in the sensory integration processes with left bilateral parieto-
temporal junction area found to be active during the imagery of move-
ment Hanakawa et al. (2008). Additionally, we see the cross-lateral
network linking the two parietal regions. In the beta band we observe
mechanistically plausible cross-lateral coupling between the ventral vi-
sual pathway and the hand representation zone of the right motor cortex
(see Fig. 12a). Additionally, we see the interaction between hand rep-
resentation areas of the right motor/premotor and the left sensory
cortices, Fig. 12b which is partly consistent with the observations re-
ported in Lamm et al. (2007) and related to the fMRI study of mental
rotation task as well as with the functional coupling profiles discovered in
(Striem-Amit et al. (2017)) for healthy controls. Lastly, we have found
ible networks found in theta (3–6 Hz) and alpha (8–12 Hz) bands.



Fig. 12. Spatial structure and temporal dynamics of the most reproducible networks found in beta (16–24 Hz) band.
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the interaction of the hand area in the right motor cortex with the left
temporal pole in the lower gamma range, Fig. 13a, and with left
orbito-frontal region in the upper gamma range, Fig. 13b. The plausibility
of these findings is supported by the hypothesized role of the left tem-
poral pole which includes “ … visual discrimination of two-dimensional
pictures, and the mnemonic functions of matching and learning” (Dupont
(2002)). Networks seen in the imaginary part of the cross-spectrum
include alpha-band coupling of bilateral sensory regions with central
inferior structure of the cortex, Fig. 11b as well as the cross-lateral con-
nections between hand related sensory cortices in the beta band, Fig. 12c.

We have also compared the results of our connectivity analysis and
Fig. 13. Spatial structure and temporal dynamics of the most reproducible netwo
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matched them against the specific induced power cortical distribution
profiles, see Section 8.5 in the Appendix. As we can see most of the
discovered networks, except for one bilateral network in the theta-band,
do not have both ends in the areas with dominating power. At the same
time, the right sensorimotor site, a node for most of our networks, co-
incides with dominant activation area. Based on the crucial role of the
right sensorimotor cortical area discovered in the original study De Lange
et al. (2008) and given that we did not perform a seed based analysis but
rather a full-blown all-to all coupling assay, we find these results
reassuring.
rks found in lower gamma (30–60 Hz) and higher gamma (65–85 Hz) bands.
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7. Discussion

We have described a novel method for detection of within frequency
coupling based on non-invasive MEG and EEG data. The proposed
framework demonstrates that it is possible to target the true instanta-
neous linear coupling with non-invasive recordings. This is achieved by
the proposed projection procedure that operates in the space of sensor
signals cross-spectral matrices and allows for efficient suppression of the
spatial leakage (SL) contribution to the real part of the cross-spectral
matrix. It turns out that while the subspace modulated by the real part
of the source space cross-spectrum and the subspace that encapsulates
the SL power overlap it is quite straightforward to build a spatial pro-
jector to banish almost all of the SL power (e.g. 95%, see Fig. 3), and yet
remain sensitive to the majority of zero-phase coupled sources. As shown
by means of simulations the proposed technique allows gaining sensi-
tivity over the entire range of phase-lag values, see Fig. 9.

Using realistic simulations we have extensively investigated the
proposed technique (PSIICOS) and compared its performance against
several other methods such as the DICS, the imaginary DICS and the
Geometric Correction Scheme (GCS). The PSIICOS technique consistently
outperformed the other three methods in both fixed configuration with
three concurrently active networks andMonte-Carlo studies under a wide
range of realistic noisy conditions and phase-lag values. Importantly, at
the same time PSIICOS performs uniformly for the entire range of mean
phase lag values.

Numerous techniques for non-invasive detection of functionally
coupled networks have emerged recently. Should we have access to the
actual signals reflecting the activity of each individual network's node,
we could use the coherence function that reflects linear (from the linear
time-invariant systems theory point of view) relationship between the
signals. However, the activity of cortical generators as measured by the
non-invasive sensors is only available in the form of a mixture of acti-
vation signals from multiple sources and thus the direct use of sensor
signals leads to erroneous results when the spatial leakage effect masks
the true functional coupling. To overcome this problem (Nolte et al.
(2004a)) suggested the use of the imaginary part of the cross-spectrum as
a sensor-space statistics insensitive to the SL effects. This triggered the
appearance of a range of methods, e.g. (Stam et al. (2007), Vinck et al.
(2011), Ewald et al. (2014)) exploiting the imaginary part of the
sensor-space cross-spectrum.While some of them do render an advantage
over Nolte's imCoh technique they are all unable to detect zero phase
coupled networks as the imaginary part of the sensor-space coherence is
not modulated by the real part of the source-space cross-spectrum that
carries the information about the actual zero-phase coupling. For zero or
close-to-zero mean phase lags SNR of the imaginary part of the
sensor-space cross-spectrum is not sufficient to produce a reliable
detection, see Fig. 9. At the same time, the use of the raw real part of the
sensor-space cross-spectrum is not possible due to the spatial leakage
effect. As we have shown here, the use of LCMV beamformer-based in-
verse operator to unmix the sensor data, as suggested by the DICS tech-
nique, does not provide the necessary fidelity and the subsequent use of
the resultant source-space coherence fails to deliver the necessary per-
formance under the realistically low SNR.

The approach presented here is most closely related to the geometric
correction scheme (GCS) by Wens (Wens et al., 2015), originally intro-
duced in application to the analysis of source-space envelope coupling
and compared against the data-driven timeseries orthogonalization
techniques (Hipp et al. (2012), Colclough et al. (2015)). The GCS
approach suggests the use of a seed-node topography combined with the
inverse operator's row corresponding to the probed source location for
removing the spatial leakage effect associated with the seed source only.
In contrast, instead of using a seed source topography and removing the
signal leakage from the single (seed) source, the PSIICOS approach
operates in the product space of coupled source topographies and creates
the projector that takes into account the SL-contributions from all
possible sources. The use of SVD allows building a projector that
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efficiently utilizes the degrees of freedom and concentrates the largest
amount of the undesired SL power in the subspace of the smallest
dimension. This projection operation is applied to the sensor-space
cross-spectral matrix debiasing it from the SL-effect. Similarly to GCS,
PSIICOS allows us to visualize the dynamics of interaction-dependent
cross-spectrum in the sensor space and supports the subsequent
sensor-space analysis (not pursued in this paper). For example, given the
growing utility of the machine learning approaches in neuroimaging data
analyses, the projection operation, forming the foundation of PSIICOS,
allows us to obtain the features reflecting true connectivity yet in a
relatively compact product space of sensor signals. PSIICOS projection
can also be applied to the vectorized single trial outer products of the
sensor space data and then utilized for discovery of cortical locations
with significant envelope correlations.

As we have demonstrated, the generative equation point of view al-
lows interpreting the task of estimation of the sensor-space cross-spec-
trum generative model parameters (cij) as a standard underdetermined
linear regression problem, routinely addressed in non-invasive neuro-
imaging techniques. This approach shows a clear way for introducing
much needed priors into the connectivity estimation task. The priors can
be extracted by means of diffusion tensor imaging and represented using
the probabilistic distribution to be then naturally exploited within the
Bayesian paradigm. Less specific and simpler priors, based on sparsity,
can also be utilized, and an approach similar to that described in
(Strohmeier et al., 2016), exploiting the mixed fractional norms of the
obtained solution, can be utilized to build sparse solvers explaining the
observed sensor space cross-spectrum with activity of a small number of
elementary source-space networks.

Also, following the parametric estimation path, it is possible to
apply the extension of dipole fitting techniques including the modified
RAP-MUSIC algorithm to the SL-free cross-spectral matrix. In fact,
(Ewald et al. (2014)) describes the use of the MUSIC approach for
analysis of the imaginary part of the cross-spectrum based on the
MUSIC metrics, but as outlined earlier, because of the sole use of the
imaginary part of the cross-spectrum, the proposed approach fails to
be sensitive to zero phase-lag coupled networks. Also, the computa-
tional time of the procedure described in (Ewald et al. (2014)) is high
and the authors resort to the two stage procedure to avoid the scan
over N2 source pairs. The vectorized form of the cross-spectrum and
the corresponding generative equation can serve as a basis for devel-
opment of the RAP-MUSIC approach where elementary networks
replace the dipoles in the original derivation of this technique (Mosher
and Leahy (1999)). RAP-MUSIC suggests recursive projections away
from the subspace spanned by the topographies of the sources found so
far. When applied to the vectorized cross-spectrum to remove the
detected elementary network consisting of nodes A and B such a
projection will remove only the contribution from the specific pair and
the projected spectrum will retain the other networks formed with
node A to other nodes, except for node B and the networks formed
with node B to all other possible nodes, but node A. This means that
using the RAP-MUSIC approach applied to the vectorized SL-debiased
cross-spectrum we should be able to study complex networks con-
sisting of more than one pair of nodes. It is worth investigating
whether or not this procedure addresses the issue raised in Mahjoory
et al. (2017) when the beamforming estimates and the global MNE
solutions resulted into different connectivity patterns.

In the current vectorized implementation in MATLAB, calculation of
the projection matrix for the cortical source model with 7000 nodes takes
less than one second of computation time and has to be done once per
subject, given the sensor positions are fixed or the data are corrected for
the movements. Then, our vectorized implementation of the source-space
scan over 7000	 7000 sites takes half a second time on a modern laptop.
Therefore, the proposed approach is computationally efficient and makes
the bootstrap analysis for investigation of the observed networks' sta-
bility feasible as demonstrated here.
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State-of-the-art MEG/EEG source-space interaction metrics that
ignore zero-phase coupling, lead to false positives Matias Palva et al.
(2018) and true negatives. While the former problem has recently
been addressed (e.g. Wang et al. (2018)), a solution for the latter issue
has not been proposed so far. In this work, we provide the first
demonstration that it is possible to probe true instantaneous linear
coupling non-invasively. Given the strong evidence of the existence of
such low-latency coupling as seen in the invasive animal studies, we
believe, the PSIICOS technique described here will significantly
expand the capabilities of the modern functional network analysis
tools.

7.1. Strengths and limitations of the PSIICOS framework

The method proposed here provides a novel solution to exploring
interactions in MEG data and can selectively address spatial leakage even
in the case of zero or close-to-zero phase coupling. This overcomes
inherent limitations of methods exploiting the imaginary part of the
cross-spectrum or data -driven orthogonalization approaches, which by
definition ignore zero-phase interactions (and have weak sensitivity for
phase lags in the vicinity of zero). Note however that PSIICOS requires a
statistical procedure based on bootstrapping and that it is not entirely
immune to false positives in the presence of uncoupled sources with
power profiles that are significantly higher than that of the coupled
sources.

Our main focus here is the novel projection scheme that allows us to
significantly suppress the contributions of spatial leakage to the sensor-
space cross-spectrum and obtain a novel generating equation (9) that
permits rendering network estimation task as a source estimation prob-
lem but in the product space of sensor signals. In order to conduct the
required performance checks, we have chosen the simplest possible
inversion strategy for this equation. Even with this simple estimation
approach our results show potentially superior performance of the pro-
posed technique over a range of other relevant methods and nearly
uniform sensitivity to all range of mean phase difference values between
the time series of the coupled sources including zero and near-zero phase
delays. Capitalizing on the work described in Darvas F (2005) we have
also suggested a bootstrap procedure that can be used to test for stability
of the observed results.

In case there are true networks present in the data the proposed
bootstrapping procedure is not likely to generate a network produced by
a pair of active but functionally uncoupled sources as long as the power of
these uncoupled sources does not significantly exceed the power in the
true networks' nodes. If the data contain multiple not functionally
coupled high-power sources, the proposed procedures may lead to false
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detections. Also, given the described way of focussing on the top values of
the ρ scan we are likely to miss some true networks.

The best way to address both of these problems is to develop an
efficient statistical test operating on the basis of H0 distribution. To be
useful, this test, however, should attempt to preserve sensor-space power
distribution, while destroying zero and close to zero phase coupling. The
tests developed so far for assessing linear synchrony are primarily
adapted to measures not sensitive to instantaneous coupling. Moreover,
applying techniques based on randomization of ICA component time
series does not provide a suitable solution when zero or close-to-zero
coupling needs to be detected. A better approach based on source
space phase randomization that would destroy mutual phases but pre-
serve the smoothness of the phase response of individual activations is
needed to address these issues. However, since the algorithms for sur-
rogate data generation match their properties against those of the orig-
inal data in the sensor space Haufe and Evald (2016), it may be difficult
for such techniques to distinguish between instantaneous correlation
caused solely by volume conduction and the true zero-phase coupling.
Therefore more consolidated efforts are needed to supply a robust sta-
tistical testing framework tailored to connectivity analysis techniques
such as the one described here.

Despite these limitations, PSIICOS represents a first attempt at
detecting zero and close-to-zero phase lag interactions from MEG data.
To the best of our knowledge, it is also for the first time that MEG/EEG
based linear coupling estimation task is rendered as a multidimensional
regression problem, similar to that encountered in the classical inverse
modeling of this data. This opens up a rich pool of exciting opportunities
to adapt the plethora of regularization based or parametric techniques
developed in the field to tackle the functional coupling estimation
problem.
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Appendix

PSIICOS projection: accommodation of arbitrary orientation

Anatomically, the dipole orientations coincide with the direction of apical dendrites of the pyramidal neurons and therefore appear to be pre-
dominantly orthogonal to the cortical mantle. Modern tools of MRI data analysis allow for a very accurate extraction and precise parametrization of the
cortical surface with number of nodes on the order of tens of thousands, which in turn results into reasonable accuracy of orientation specification. The
uncertainty that remains may be efficiently modeled with such techniques as in Lin et al. (2006).

Because of memory and processing time limitations when performing exploratory source-space synchrony analysis we have to use a significantly
downsampled version of the cortex that contains only several thousands of nodes. Such downsampling drastically reduces the requirements to
computational resources but introduces significant uncertainty in orientations of elementary sources.

Therefore, it became a common practice to restrict the source space to the downsampled cortical mantle and to model the arbitrary orientations of
node dipoles by representing each elementary source with the triplet of orthogonal dipoles. In case of MEG, since the magnetic field outside the
spherical conductor produced by a dipole with radial orientation is zero, the triplet can be efficiently replaced by a pair of dipoles in the tangential plane,
calculated for each node.

For an arbitrary orientation vector at some i-th vertex θi ¼ ½θxi θyi �
T the corresponding dipole topography is gθii ¼ ½gxi gyi �θi , where gxi , g

y
i are the

topographies of the two orthogonally oriented dipoles in the tangential plane at the i-th vertex. Varying the orientation angle we will obtain an infinite
set of SL topography vectors qθ

ii ¼ vecðgθii gθiTi Þ. It is easy to show that in case of two-dimensional tangent space (as we have in MEG) all these vectors
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belong to the three-dimensional subspace Sθi ¼ spanðqxx
ii ;q

yy
ii ;q

xy
ii þ qyx

ii Þ.
Therefore, in order to accommodate the arbitrary orientation constraint, equation (7) has to be replaced by

F ¼ 	
qxx
11;q

yy
11;q

xy
11 þ qyx

11;…;qxx
LL;q

yy
LL;q

xy
LL þ qyx

LL



(11)

The projection matrix is then found as described in Step 3 in section 2.3.
PSIICOS projection: impact of the rank parameter

We have studied the dependence of the attenuation factors in all three subspaces as a function of the projection rank. Fig. 14 shows the average
attenuation of the power in the three subspaces as a function of the projection rank. To obtain this plot we performed a Monte-Carlo analysis. At each
iteration we randomly selected a subset of 200 sources and calculated all the vectors from the three subspaces SSL;S<;Sℑ. We used sources with fixed
orientations orthogonal to the cortical mantle. We then varied the rank of the projection and computed the projected versions of these elementary
network topography vectors. To quantify the attenuation effect, we calculated the average ratio of the original to the projected vector norms for each
value of the projection rank. We repeated this process 100 times and averaged the result.

Because of the intersection of the SSL and S< subspaces the projection operation attempting to suppress the SL component power inevitably leads to
suppression of power in the S< subspace. The less power in the S< subspace is suppressed for the fixed SL power suppression factor the better the
performance is. Therefore, in addition to the attenuation curves for the subspaces we have also plotted the log-ratio of attenuation coefficients observed
for the vectors in the S< subspace to that for the SSL subspace. The use of the SVD factorization to form the projection operator allowed for the observed
significantly faster reduction in the spatial leakage subspace SSL power than in the S< subspace. In other words, we see that the increased projection rank
leads to a greater dominance of power in S< subspace over that in the SSL subspace.

We have thus shown that cross-spectrum C?ðt; f0Þ projected away from the SL subspace is dominated by the energy in the true connectivity subspace.
The product-space topographies of the interacting pairs can be easily computed as qij ¼ Pqij and the corresponding generative model of the projected
cross-spectrum (see equation (9)) can be used to perform inference on the source-space cross-spectral coefficients cssij ðt; f0Þ.

Fig. 14. a) Attenuation of variance in SL and S< subspaces as a function of projection rank for three different virtual sensor (VS) space dimensions. b) Difference in
attenuation factor for S< and SL subspaces as a function of projection rank for three different virtual sensor (VS) space dimensions. These curves allow making an
informed decision regarding the choice of the projection rank. We suggest choosing PSIICOS projection rank value corresponding to the largest differential
attenuation.

PSIICOS projection: forward model inaccuracy effect

The described projection procedure requires forward model (FM) operator that in a realistic setting inevitably comes with inaccuracies. In this
section we study the performance of the proposed projection operation in presence of the structured and non-structured errors in the forward
model.

We used two models of noise in this study. The first model corresponded to spatially unstructured noise and was implemented simply by adding the
appropriately scaled random noise to the FMmodel operator matrix. We sampled form theNð0;1Þ distribution to generate a FM noise realizationmatrix.
We then scaled this by multiplying its elements by the square-root of the mean trace value of matrix GGT where G is the forward model matrix. We then
added this matrix to the actual (true) forward model and adjusted the amount of noise by parameter α.

The second model corresponds to a more realistic scenario of spatially structured distortion. To generate the spatially structured noise matrix we
used the head models computed for N ¼ 10 subjects and calculated the pairwise differences between the forward models for each pair of subjects. We
then computed the structured noise matrix as the average of these pair-wise differences. We then standardized the resulting structured noise matrix
added it to the true forward model. As in the previous case we adjusted the amount of noise by parameter α used to scale the noise matrix.

Potentially, the inaccuracies in the FMmay cause the simultaneous reduction in the SL power attenuation and the decrease of S< subspace power. We
performed Monte-Carlo simulations to numerically study these effects. At each iteration we randomly selected a subset of 200 sources and calculated
mean attenuation ratio for the three subspaces. We did so for both structured and unstructured noise cases and for two different projection rank values
(350 and 500). The results are shown in Fig. 15.

We can see that while the inaccuracies in the forward model do cause deterioration of performance of the proposed projection scheme, for typical
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MEG FM noise levels of 10% (Mosher et al. (1999)) we have almost the same value of the SL power attenuation and only about 20% of additional
decrease in the S< subspace variance.

Fig. 15. Effects of FM noise on the projection performance. Panel a) shows the dependence of SL attenuation factor as a function of the FM noise intensity α. From the
graph in panel b) we can see the attenuation factor for the variance in the S< subspace. As follows from panel c) the extent of suppression of power in the SL subspace
as compared to the power in S< monotonically decreases with the forward model noise intensity.

Because of the intersection of the SSL and S< subspaces attempting to suppress the SL component the algorithm also suppresses the power in the true
real interaction subspace S<. The inaccuracies in the FM increase the undesired suppression of power in the S< subspace and decrease the SL power
suppression efficiency. Such performance deterioration with the increase of FM inaccuracies intensity can be characterized by the ratio of the atten-
uation factors experienced by the vectors in the SL and S< subspaces. When this ratio is less than one, we can say that the SL power gets decreased more
than the power in the S< subspace, and therefore, the smaller this ratio the better is the performance of the proposed scheme. We therefore calculated
the ratio of the power attenuation factor for the SL subspace to that of the S< subspace and plotted it in panel c) of Fig. 15. As we see, the value of this
ratio changes smoothly with the growing intensity of the FM noise and remains low for the 10% noise level.

In this section, we have described our numerical studies investigating the deterioration of the performance of the posed projection scheme due to the
forward model inaccuracies. Based on the presented numerical results, we conclude that the method is sufficiently robust to tolerate typical FM
modeling inaccuracies and can be used in a realistic setting. However, as with many other model-based techniques (e.g. beamforming) the efforts of
creating more accurate forward models will have a tangible payoff and therefore need not be neglected.
Performance metrics

Here we detail the Precision-Recall metrics that we used along with more standard ROC curve for comparing the performance of several networks
detection approaches. Precision (or positive predictive value), recall (sensitivity) and specificity are defined as follows

precision ¼ TP
TPþ FP

;

recall ¼ TP
TPþ FN

specificity ¼ TN
FPþ TN

;

(12)

where TP, FN, FP, and TN stand for true positives, false negative, false positive, and true negative detections correspondingly. In order to calculate these
quantities, we need to label all possible connections between the source-grid nodes as those that belong and those that don't to the simulated networks.
Since for simulating the data we used a high-resolution cortical mesh with 15000 grid nodes and for detection step we used a 10 times sparser version of
the cortical mesh, we employed the notion of δ-cylinder. Each n-th true network is defined in our simulations by a pair of nodes with coordinates rn1 and
rn2. For each such node we define a set of indices of cortical mesh nodes Ωn

1 and Ωn
2 whose coordinates fall into the δ neighborhood of rn1 and rn2 , i.e.

Ωn
k ¼ fig : ðrnk � riÞ < δ for k ¼ 1; 2. A connection between a pair of nodes from Ωn

1 and Ωn
2 subsets (but not within one subset) is considered to be a true

connection corresponding to network n.
As we can see, from the last line of equation (12), since all node-pairs that fall within Ωn

1 and Ωn
2 subsets constitute a small fraction of all possible

connections and TN is extremely large only high specificity values are of interest. Since the ROC curve shows sensitity vs 1-specificitywe will be primarily
967



A. Ossadtchi et al. NeuroImage 183 (2018) 950–971
interested in the behavior of this curve for low abscissa values. In our plots, we considered ROC curves in ½0; 0:01� false alarm range. At the same time,
the precision metrics operates only within the subsets Ωn

1 and Ωn
2 which makes the precision-recall plots a convenient performance metric in our

scenario.
Precision-recall (P-R) curve clearly reflects the performance in a single network case. For multiple true networks (which is the case in the second set

of simulations) the high area under the P-R curve may be obtained even if only one out of several true networks is detected. In order for the P-R plot to
adequately reflect the detection performance in the multiple networks scenario, we encoded with marker size the number of true networks the detected
connections come from.
Induced activity power distribution

In order to validate our findings and make sure the obtained networks do not entirely coincide with cortical regions with dominating activity, we are
presenting here the band-specific distribution of the induced activity, see Figs. 16–18. These maps were produced usingMNE-python software according
to the following procedure.

First, in order to compensate for the differences in trials' duration due to varying response latencies we cropped each trial in [-0.5, 1.024] seconds
interval which corresponded to the time range of the shortest trial. Then, in order to alleviate the filtering boundary effects, we computed the time-
inverted version of each trial and padded the original trial with its time-inverse from left and right. These triple-length trials were then filtered in
five frequency bins of interest with the FIR zero-phase filter and cropped back to the [0,1] seconds time interval with 0 corresponding to the stimulus
onset of the original, noninverted trial. Next, for the source space with 8194 vertices we computed the MNE inverse operator with loose orientation
constraint (loose orientation coefficient¼ 0.2) and depth weighing (coefficient¼ 0.6) and applied it to the individual trials. Finally, we averaged
squares of the source-level trials both across time and trials and plotted the results.

Fig. 16. Distribution of induced oscillatory power for theta (3–6 Hz), alpha (8–12 Hz), beta bands.
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Fig. 17. Distribution of induced oscillatory power for beta (16–24 Hz) band.
Fig. 18. Distribution of induced oscillatory power for lower gamma (30–60 Hz) and gamma (65–85 Hz) bands.
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